

InterLab 2005InterLab 2005

A Role-Based approach for managing
MS SQL Server access

Michael Kanyid
kanyid@pnl.gov

01/03/06

OverviewOverview

Managing access to an MS SQL Server database
via our Role-Based Access Control system.
Points of discussion
 The situation and its flaws that existed prior to the

solution
 The thought process and design of a workable solution
 The specifics of the implemented solution.

3

AgendaAgenda

Setting the Stage
 The Situation
 Trouble in Paradise
 Goal and Objective
 Available Options
 Recommendation

The Design
The Solution

01/03/06

The SituationThe Situation

A proprietary vendor application with limited
security capabilities
A SQL server database on the backend comprised
of over 180 user tables
A diverse group of users sometimes with
conflicting interests
A need for granting timely access
Limited IT resources

5

Trouble in ParadiseTrouble in Paradise

User’s must rely upon the IT staff to provide them
access to their system.
The additional human interaction affects the
timeliness of providing the access.
Granting access can be a tedious, complex
process that doesn’t always provide consistent
results.
The vendor solution used a simplistic model that
combined user permissions and display
configurations and hence data ownership could not
be effectively managed.

01/03/06

Goal and ObjectiveGoal and Objective

Goal: Remove the IT staff from the equation and
provide a more refined ability for the data owners
to grant permissions to their data.
Objective: Create a process of granting access that
 minimized IT support staff involvement and is
managed by the users of the system. The solution
should separate the user interface configuration
from the permissions to the data and provide data
owners greater control over their data.

01/03/06

Available OptionsAvailable Options

Ask the vendor to supply a better security package
 Reduces our M&O costs BUT…
 Not likely to happen in the foreseeable future.

Construct a security design external to the vendor
package.
 A custom package that will meet our needs BUT…
 Solution is external to the vendor application.

Live with it.
 Focus our energies elsewhere.

01/03/06

RecommendationRecommendation

There are a number of reasons for why we choose
to implement a custom solution.
 Improve the user experience by reducing cycle-time for

access to the data
 Increase security of the data by providing finer

granularity in assigning permissions
 Put the control into the hands of the functional

organization
Next step is to design the solution

9

AgendaAgenda

Setting the Stage
The Design
 Strategy
 Rules of Engagement
 Modules & Tables
 Data Ownership
 User Inputs, User Outputs
 Constructing the SQL Roles
 Conclusions

The Solution

10

StrategyStrategy

There are two directions from which to approach
the problem of creating a security model.
 Break down the people into groups with particular

functions
 Breaks down the database structure where particular

data needs to be stored
Using the first approach doesn’t take into account
limitations within the database structure.
The second approach alone may yield a more
complex model because systems rarely model the
real world in exact terms.

11

Rules of EngagementRules of Engagement

Keep the total number of roles to the minimum number
necessary for system efficiency and ease of maintenance.
This helps reduce maintenance costs associated with
having a large number of roles. (May conflict with #2.)
Keep the number of permissions within each role to the
minimum number necessary to reduce the amount of
maintenance within each role. (May conflict with #1.)
Look for overlap between roles and move them into a single
role to reduce the maintenance associated with trying to
maintain the same permissions within multiple roles. (May
conflict with both #1 & 2)

12

ModulesModules

The diagram represents a
basic grouping of data into
modules within the space
called IPMaster where the
modules encompass
mutually exclusive sets of
data, which is to say that
management of specific
data is not shared with
other modules.
Furthermore, the modules
and residency of the data
was defined by the vendor.

Space: IPMaster

Disclosures

Patents

Commercialization

Trademarks/Copyrights

Agreements

13

TablesTables

Each module is comprised
of a finite number of tables.
I initially made the assertion
that tables belong to one
and only one module.
This could be further
broken down by column but
that may needlessly
increase the complexity of
the final solution.

Space: IPMaster

Disclosures

Patents

Commercialization

Trademarks/Copyrights

Agreements

A key point to show here is that the database
represents a finite physical structures of columns
within tables which reside in a database to
describe a real-world situation.

14

Data OwnershipData Ownership

The green irregular shapes
represent information
managed by a data trustee
or “owner” while the blue
lined boxes represent the
modules – the delineation
of the data as defined by
the vendor.
You’ll note that the data
rarely mirror the application
and may cross several
other boundary groupings
like modules or tables.

Space: IPMaster

Disclosures

Patents

Commercialization

Trademarks/Copyrights

Agreements

Another key point is that the irregular shapes
representing data owners are distinct, non-overlapping
regions. For management of data to be effective
there must be one and only one owner of the data,
hence our design is based upon this point.

15

User InputsUser Inputs

In this diagram the magenta
shapes are symbolic of the
inputs into the system by a
particular group.
There is a set of data
needed by each group for
performing their job
function. In the real world,
this data may or may not
reside wholly within the
IPMaster space and, in fact,
it is most likely the case
that it does not.

Space: IPMaster

Disclosures

Patents

Commercialization

Trademarks/Copyrights

Agreements

Group A

16

User OutputsUser Outputs

For this diagram the cyan
shapes are symbolic of the
outputs.
As there are inputs, this
diagram represents the set
of data that each group
must record somewhere.
Again, in the real world the
data may not always be
data within the IPMaster
space.

Space: IPMaster

Disclosures

Patents

Commercialization

Trademarks/Copyrights

Agreements

Group A

17

Constructing the SQL RolesConstructing the SQL Roles

As one example this
diagram represents the
SQL Server roles defined
by the intersection of two of
the previous diagrams – the
Data Owners and the User
Inputs.
It is important to note that
roles are created across
vendor modules.

Space: IPMaster

Disclosures

Patents

Commercialization

Trademarks/Copyrights

Agreements

Role C

Role B

Role D

Role A

18

ConclusionsConclusions

Within RBAC we can create meaningful “data
owner” roles by grouping the User Input / Output
SQL roles on the database side back into the
functional organizations perspective. As users are
assigned to these RBAC functional roles a
translation table can be used to apply the
permissions within the database.
In the end, combining the functional organizational
groups with the structural organization within the
database yields a picture for determining how to
define RBAC and SQL roles within the system.

19

AgendaAgenda

Setting the Stage
The Design
The Solution
 Extract the roles from RBAC
 Manage the user accounts
 Update user account permissions
 Update database roles with object permissions

20

Starting SimpleStarting Simple

Table:
RBAC_ROLE_USER_

ASSIGNMENT

Table:
RBAC_SQL_ROLE_

ASSIGNMENT
Table:

sysusers

Table:
PROFILE_

PERMISSIONS

sp_Manage
IPISUsers

UP_PROFILE_
PERMISSIONS

sp_Update
UserRoles

IPISRoleSync
.exe

ZENA Job #2:
Run

sp_ManageIPIS
Users

ZENA Job #1:
Run

IPISRoleSync
.exe

ZENA Job #3:
Run

sp_UpdateUser
Roles

Nightly
Execution

Retrieve
SQL Server
Role Names

Nightly
Execution

Write
IPIS Role
NetworkID

Domain

Retrieve
NetworkID

Retrieve
NetworkIDRetrieve

Existing
NetworkID

Nightly
Execution

Update
Account

Permissions
Add/Remove

Accounts

Update SQL Server
Role Permissions

Retrieve SQL Server
Role Name and
Permission Set

Get
IPIS Role
NetworkID

Domain

IPIS
Database

RBAC

ZENA Job #4:
Run

up_Profile_
Permissions

Nightly
Execution

21

Extract roles from RBAC…Extract roles from RBAC…

The Zena process kicks off
the IPISRoleSync.exe
process which
 Deletes the records in the

RBAC_ROLE_USER_
ASSIGNMENT table.

 Loads the newly constructed
recordset into empty the
table.

Table:
RBAC_ROLE_USER_

ASSIGNMENT

IPISRoleSync
.exe

ZENA Job #1:
Run

IPISRoleSync
.exe

Nightly
Execution

Write
IPIS Role
NetworkID

Domain

Get
IPIS Role
NetworkID

Domain

RBAC

22

… … into the databaseinto the database

The RBAC_ROLE_USER_ASSIGNMENT table contains
the roles assigned in RBAC by the functional organization
administrators. The load process will cycle through each
RBAC child namespace in the IPIS namespace and collect
all users from each child namespace role.

MILKY-WAYIPIS.BCOViewerUserAccess.BCOViewerUserAccessFREUDENREICHB

MILKY-WAYIPIS.BCOCommercialization.BCOCommercializationManagerDVORSKY

PNLIPIS.PNNLPatents.PNNLPatentAdministrationD3E802

PNLIPIS.PNNLInventionDisclosures.PNNLInventionDisclosureAdminD3E802

PNLIPIS.eDA.ManagerD3E802

PNLIPIS.IP Master AdministratorsD3A130

PNLIPIS.eDA.SysAdminD3A130

PNLIPIS.eDA.ManagerD3A130

PNLIPIS.App AdministratorsD3A130

DOMAIN_NAMERBAC_ROLE_NAMEUSER_NETWORK_ID

23

Manage the user accountsManage the user accounts

The second part of the process
executes sp_ManageIPISUsers
which creates a recordset that
identifies who has an account but
is not in the RBAC_ROLE_
USER_ASSIGNMENT table and
removes those accounts from the
system.
A new recordset with the reverse
relationship has accounts that
show up in the RBAC_ROLE_
USER_ASSIGNMENT table but
do not exist in the database. The
procedure will then loop through
this recordset, adding an account
for the user on the server.

Table:
RBAC_ROLE_USER_

ASSIGNMENT

Table:
sysusers

sp_Manage
IPISUsers

ZENA Job #2:
Run

sp_ManageIPIS
Users

Nightly
Execution

Retrieve
NetworkID

Retrieve
Existing

NetworkID

Add/Remove
Accounts

IPIS
Database

24

The translation tableThe translation table

The RBAC_SQL_ROLE_ASSIGNMENT table stores the
relationship between the Roles-Based Access Control
(RBAC) system established roles and the SQL Server roles
within the IPIS database system. There will be two
columns, one to store the RBAC role identifier and the
second to store the SQL Server role name.

ColumnLevelUpdateIPIS.PNNLCommercialization.PNNLCommercializationManagers

RelatedRecordsIPIS.PNNLCommercialization.PNNLCommercialAdministration

Profile1IPIS.PNNLCommercialization.PNNLCommercialAdministration

CommercialSupplementalIPIS.PNNLCommercialization.PNNLCommercialAdministration

CommercialAuthorsIPIS.PNNLCommercialization.PNNLCommercialAdministration

RelatedRecordsIPIS.BCOAgreements.BCOLicensingAdministration

Profile1IPIS.BCOAgreements.BCOLicensingAdministration

PartyAuthorsIPIS.BCOAgreements.BCOLicensingAdministration

AgreementAuthorsIPIS.BCOAgreements.BCOLicensingAdministration

SQL_ROLE_NAMERBAC_ROLE_NAME

25

Update user account permissionsUpdate user account permissions

The third part of the process,
sp_UpdateUserRoles, queries
the system tables to retrieve the
set of users within the database.
The stored procedure loops
through this set of users and
removes them from their
currently assigned roles.
A recordset is created by joining
the table of the extracted roles
with the translation table. We
loop through it and add each
user to the corresponding SQL
Server role.

Table:
RBAC_ROLE_USER_

ASSIGNMENT

Table:
RBAC_SQL_ROLE_

ASSIGNMENT

sp_Update
UserRoles

ZENA Job #3:
Run

sp_UpdateUser
Roles

Retrieve
SQL Server
Role Names

Retrieve
NetworkID

Nightly
Execution

Update
Account

Permissions
IPIS

Database

26

Object permission cross-reference tableObject permission cross-reference table

The PROFILE_PERMISSIONS table contains the object name, either a
Table, View, or Column, to which the permissions will be applied. This
object name is the primary key for the table. In our security model,
permissions (i.e. SELECT, INSERT, UPDATE, DELETE, EXECUTE)
can only be assigned to one role per object. The data stored in the
columns SELECT, INSERT, UPDATE, DELETE, and EXECUTE are
the names of the SQL roles to which the specified permission for the
object will be granted.

dbo publicV vwTrademarkTypesAdmin

dbo Profile5V vwTrademarkTextTitle5

dboTrademarkAuthorsTrademarkAuthorsProfile1V vwTrademarkTextTitle1

dboColumnLevelUpdate C DisclosureMasters.UpdateUser

dboColumnLevelUpdate C DisclosureMasters.UpdateDate

dboDisclosureAuthorsDisclosureAuthorspublicU DisclosureMasters

dboCodeAuthorsCodeAuthorspublicU Codes

dboCodeAuthorsCodeAuthorspublicU CodeReminders

dbo publicU Browses

dbo publicU AUDIT_LOG_TRANSACTIONS

CHG’d UPDATEINSERTSELECTTYPEOBJECT_NAME

01/03/06

Assign object permissions to rolesAssign object permissions to roles

The last part of the process executes the stored procedure
UP_PROFILE_PERMISSIONS and generates a list of all
object permissions, except those belonging to the IPAdmin
and Extract roles.
Existing permissions are revoked on each table and view.
Permissions to objects are granted to the roles established
in the PROFILE_PERMISSIONS table.

Table:
PROFILE_

PERMISSIONS

UP_PROFILE_
PERMISSIONS

Update SQL Server
Role Permissions

Retrieve SQL Server
Role Name and
Permission Set

IPIS
Database

ZENA Job #4:
Run

up_Profile_
Permissions

Nightly
Execution

01/03/06

Features & BenefitsFeatures & Benefits

System owners are now empowered to add or remove
users at their discretion – IT staff are no longer involved.
User’s access requests are more timely due to fewer staff
involved in the process.
Granting access is much less painful and is always granted
in the same manner due to a common user interface even
though there are still complexities behind the scenes.
The vendor solution has been enhanced by separating the
user permissions and display configurations which has
allowed greater control over the information by the data
trustees.

THE USERS ARE HAPPY !

Thank YouThank You

Questions?

michael.kanyid@pnl.gov

